摘要

为了高效地实现云计算任务调度,融合改进的分数阶达尔文粒子群算法和多目标函数构造,提出一种新的云计算任务调度算法。对分数阶达尔文粒子群算法进行全方位改进,基于粒子群适应度动态调整惯性权重系数以自适应搜索最优解;利用粒子自身进化信息定义进化因子,结合进化因子并利用高斯图函数调整分数阶次α系数以实现快速收敛;借助Levy飞行随机扰动对局部最优位置进行位置扰动以提高跳出局部最优的能力;综合最短等待时间、资源负载均衡程度及任务完成所耗费用等三个目标构造任务调度满意度函数,以此搜索任务调度最优解。仿真实验表明,与其他粒子优化算法相比,该算法有较快的收敛速度和较高的寻优精度;在任务调度中,该算法与其他三种调度算法相比,在较低的截止时间未完成率下实现了虚拟资源的均衡负载。

  • 单位
    太原工业学院