摘要
唐卡图像的内容丰富,纹理信息复杂。边缘检测在唐卡图像分析研究中具有非常重要的意义,因为唐卡图像轮廓含有大量的图像数据信息。数学形态学方法提取的边缘光滑连续,但是对复杂的边缘检测时会存在模糊不清晰的现象[1]。卷积神经网络(CNN)可以提取很多高层的、多尺度的信息[2]。为此提出的边缘检测方法,用优化的数学形态学算法提取原图像边缘;利用训练的RCF网络模型[3]提取原图像的边缘。根据小波变换的分解与重构原理将以上方法得出的图像边缘融合,从而得到更加完整光滑的图像边缘。实验表明,融合后的图像边缘更加清晰连续,轮廓信息更符合人类的视觉认知,去掉了无效的细节纹理,更有利于唐卡图像后续研究。