摘要

图G的一个正常边染色f,若满足:1)G中无2-色圈;2)对于V(G)中的任意两点u和v,有C(u)≠C(v),这里C(u)={f(uw)|uw∈E(G)},则f叫做图G的一个点可区别无圈边染色.图G的点可区别无圈边色数,记为χ′_(vda)(G),是图G的一个点可区别无圈边染色所用色的最小数目.证明了若图G是一个最小度不小于5,且顶点数不超过30Δ~4的图时,χ′_(vda)(G)≤10Δ~2,其中Δ是图G的最大度.

全文