摘要

为了协助病理医生诊断乳腺肿瘤,提出了一种计算机自动识别分析乳腺病理图像的方法.该方法采用乳腺病理图像数据集BreaKHis作为数据样本,在卷积神经网络模型VGG-19的基础上,提出了一种VGG-19A的改进网络模型.通过在卷积层中的激活函数前加入BN算法,在全连接层中加入dropconnect层,来优化网络模型的性能,提升网络模型的识别精度.此外,考虑到迁移学习方法能够让网络模型更加充分地学习图像特征,将其引入到VGG-19A网络的训练中.将该网络应用到乳腺病理图像的识别过程中,同时采用PFTAS+QDA,PFTAS+SVM,PFTAS+RF,Single-Task CNN,AlexNet以及VGG-19算法进行了对照试验.结果表明新算法在图像识别的准确性和泛化性能上相较现有方法都有了一定的提升,因而具有一定的临床应用价值.