摘要
为解决人工诊断和检索过程繁琐、误诊率高、数据量大以及哈希码稀疏等问题,提出一种基于多标签语义监督的3D ResNet网络,对肺结节的医学征象进行量化,构建多标签数据集相似矩阵;通过三线性插值方法构造3D肺结节块,利用相似性度量设计损失函数进行3D特征学习并提出交替最小化优化方法进行优化,提高网络特征的表征能力,解决由于离散的哈希码而不能使用传统方法进行求解的难题,学习到紧密表达的哈希码。实验结果表明,利用本文提取的3D特征进行检索,平均准确率提高18.5%,在扩充的公开数据集以及合作医院数据集上可以达到94.83%的平均检索精度。
-
单位山西省人民医院; 太原理工大学