当前风电机组齿轮箱是通过状态监视系统采集齿轮箱高频振动数据,并通过人工分析的方式对齿轮箱进行故障诊断。这种方法不仅需要振动分析工程师具备足够的经验知识,而且因机组数量多,导致人工分析费时费力。为此,文章通过将采集到的原始数据进行倍频转换和对齐,消除变工况的影响,并采用时长分割对数据样本进行扩增,提取特定倍频段时域特征和频域特征作为机器学习的输入,通过模型训练构建了齿轮箱故障预测模型,模型准确率超过90%,有效实现了齿轮箱的故障预测。