基于PCANet和SVM的病变眼底图像检测算法

作者:杨得国; 马兰萍; 聂毓
来源:江西师范大学学报(自然科学版), 2022, 46(04): 372-378.
DOI:10.16357/j.cnki.issn1000-5862.2022.04.07

摘要

针对眼底图像训练数据集少的问题,该文采用了无监督的主成分分析网络(principal components analysis networks, PCANet)和有监督的支持向量机(support vector mochine, SVM)相结合的算法,通过对彩色眼底图像视网膜渗出物特征的提取,检测出含渗出的糖尿病性视网膜病变眼底图像和正常眼底图像.在对眼底图像进行渗出物特征提取之前,为了减少对渗出物特征提取的干扰,首先对眼底图像进行图像预处理,包括去除冗余背景、通道分离、直方图均衡化、血管去除和视盘去除.无监督的PCANet不需要进行标签训练,与SVM结合,既节约了训练时间,又在训练数据集较小的情况下实现眼底图像的准确分类.实验结果表明:PCANet和SVM相结合的模型在准确性、灵敏度和特异值3个方面与相关方法比较都具有一定的提升.

全文