摘要

针对低秩稀疏表示的高光谱异常检测算法中背景字典易被污染、空间信息利用不足的问题,提出基于分数阶傅里叶变换(FrFT)和全变分正则化约束的高光谱图像异常检测算法.通过聚类算法,将图像高维数据映射至多个子空间;构造FrFT-RX算子,增大背景和异常的可分性,得到较纯净的背景字典.为了表示FrFT变换后中间域内背景与异常的空间特征,在低秩稀疏表示模型中引入全变分正则化项约束.采用交替方向乘子法对模型进行优化求解,得到异常检测的结果.在3个真实高光谱数据上开展目标检测实验,实验结果表明,与其他5种异常检测算法相比,本文算法具有更高的检测率和较低的虚警率.