以金字塔残差模块为基础,设计了一个轻量化的网络模型。使用深度可分离卷积代替普通的卷积以减少训练的参数,同时加入通道分离模块和通道混合模块来改变特征图通道维数,以加强特征的融合。为保证网络仍然能更完整的提取特征,只对恒等映射部分进行了通道分离处理,在最后的特征融合加入了通道混合模块,在标准MPII数据集上进行测试。结果表明,轻量化的金字塔残差网络有效地减少了网络的参数,减少了约1/2的参数存储空间并保持相当的准确度,同时复杂度仅为2.83 GFLOs。