摘要

针对石油化工厂中人工抄表导致的低效、高误差和成本高等弊端,以及仪表图像拍摄条件场景复杂等问题,提出了一种基于改进Faster RCNN模型的工业数字表检测方法。首先,在特征提取网络阶段对卷积层低层和高层的网络特征进行融合,提高模型对细粒度细节和小目标的敏感度;其次,结合SENet网络结构,使模型关注不同通道的重要程度,通过分配不同的学习权重来强化对目标的关注度;最后,利用RPN网络进行最后处理,提取出数字表图像的边界框位置信息。结果表明,本文提出的模型检测精度为97.3%,相对于传统目标检测算法来说能更精准地识别出数字表。