摘要

针对图像纹理较为单一及相对模糊时仅仅依靠点特征难以实现精确位姿估计的问题,采用分散模块化技术提出了一种基于点线特征的视觉SLAM(同时定位与地图创建)算法.首先,提取相机采集环境中的点特征及线特征,并根据帧间特征匹配进行跟踪;随后,采用改进的NICP(normal iterative closest point)算法与关键帧匹配策略构建里程计系统.在此基础上,引入基于点线特征词典的闭环检测与GTSAM(Georgia Tech smoothing and mapping library)图优化方法获取具有全局一致性位姿的3维点云地图.以机器人技术中间件构筑系统框架,在提高系统实时性的同时增强功能模块的可扩展性与灵活性.标准数据集与实际实验室场景下的实验结果验证了所提方法的可行性和有效性.

全文