摘要
针对三维卷积网络在训练样本较少时对高光谱图像的分类精度不理想问题,提出了一种高效的基于多特征融合和混合卷积网络的分类模型。首先,对高光谱图像进行降维处理后用三维卷积层提取深层空谱联合特征。然后,引入残差连接并通过特征图连接和逐像素相加进行多特征融合,实现特征重用、增强信息传递。最后,用二维卷积层对提取的特征进行空间信息强化,实现图像分类。实验结果表明,在三个公开高光谱数据集Indian Pines、Salinas和University of Pavia中分别用标记样本的5%、1%、1%作为训练样本时,本模型的分类精度分别为97.09%、99.30%、97.60%,可以有效提升小样本情况下的高光谱图像分类效果。
- 单位