摘要
为了提高边界元法的计算精度和对具有复杂边界形状实际问题的应用能力,发展并应用非连续线性和二次边界单元进行数值计算.使用传统边界积分方程计算外声场,通过带有解析解数值算例,对比不同类型单元的计算精度,得到最有效的单元类型.然而使用传统边界积分法,在某些虚假特征频率处会产生解的非唯一性问题,Burton-Miller方法可以有效地克服这一问题.基于Burton-Miller法得到的非连续线性和二次单元的优化节点位置并不在勒让德多项式零点位置上,虽然表现得不像传统边界元法那样规律和统一,但是合适的经验值仍然被给出.
- 单位