基于路图特征和SVM的钢轨裂纹识别

作者:冷强; 刘文波; 赵旭东; 杜晨琛; 王平
来源:测控技术, 2019, 38(10): 5-39.
DOI:10.19708/j.ckjs.2019.10.002

摘要

为了进一步提升钢轨裂纹的识别精度,从新特征的角度出发,提出一种基于路图特征和支持向量机(Support Vector Machine,SVM)的钢轨裂纹识别方法。该方法基于图信号处理与图谱理论,计算由钢轨裂纹时域漏磁(Magnetic Flux Leakage,MFL)信号转换得到的路图信号的"时域"和"频域"统计量作为钢轨裂纹MFL信号的特征训练SVM分类器,有效实现了不同缺陷参数的钢轨裂纹识别。基于钢轨裂纹漏磁检测平台实测数据验证所提方法的有效性。实验结果表明,相比于传统漏磁信号特征,采用路图特征在钢轨裂纹识别中的精度更高、稳定性更好。