摘要

应用智能公交系统(APTS)提取个体乘客出行信息,构造了公交出行链,研究了基于时空行为规律挖掘(STBRM)的公交乘客分类方法;应用时间序列表征乘客出行时间特征,利用互相关距离(CCD)算法计算了个体乘客出行时间规律;应用带噪声基于密度的空间聚类(DBSCAN)算法,挖掘了个体乘客的出行空间规律;依据出行强度和出行时空规律,将乘客划分为极少出行、时间规律、空间规律、时空规律和不规律等5个群体;以出行天数、类似上车时间数量和类似上车站点数量为聚类指标,应用K-Means++算法将乘客划分为高规律、中规律和低规律3类,比较了本文提出的STBRM方法和K-Means++聚类方法的分类结果,揭示了2种方法分类结果之间的关系。研究结果表明:当时段划分长度取5 min,时间规律性判断阈值取3.0时,利用CCD算法识别时间模式规律乘客的效果最佳,与常用的DBSCAN算法相比,识别率提升了14.64%;增加时间窗长度能够提高时间、空间模式规律判定结果的稳定性;时间窗长度达到3周后,空间模式规律的乘客比例下降趋缓,达到6周后趋于稳定;时间窗长度达到2周后,时间模式规律的乘客比例增长趋缓,达到4周后趋于稳定;时间规律、空间规律和时空规律等3类乘客数量仅占总乘客数量的30.4%,但其出行量占到了总出行量的84.7%,公交依赖度很高,应作为公交机构重点保障的对象;本文提出的STBRM方法与K-Means++聚类方法的分类结果具有较强的关联性,规律性极高或极低的群体高度重合。