摘要

针对传统点云配准中存在配准精度低、耗时长的问题,提出一种邻域多维度特征点结合相关熵模型的点云配准方法。首先根据邻域点的加权投影信息、表面曲率和法向量夹角提取特征点;其次用二值化的方向直方图描述子(B-SHOT)进行特征描述与匹配,然后利用刚性距离约束剔除误匹配,并通过随机采样一致性算法获取初始变换矩阵;在精配准阶段,以点到面的距离为准则双向搜索对应点,并通过多种几何特征约束剔除误匹配点对,最后迭代最大相关熵模型的目标误差函数完成精配准。实验结果表明,本文算法比迭代最近点算法(ICP)的配准精度提高了15%~97%、配准效率提高了约90%。