基于特征编码和动态路由优化的视觉定位方法

作者:仉新; 郑飂默; 谭振华; 李锁
来源:中国惯性技术学报, 2022, 30(04): 451-460.
DOI:10.13695/j.cnki.12-1222/o3.2022.04.005

摘要

针对视角变化、光照变化、大尺度和动态物体等复杂场景下,移动机器人定位的准确性低、鲁棒性差等问题,提出基于特征编码和动态路由优化的视觉定位方法。首先,引入基于残差网络的特征编码策略,提取图像的几何特征和语义特征,减少图像噪声信息,加快模型的收敛速度;其次,通过熵密度峰值优化网络的动态路由机制,采用向量表示特征之间的空间位置关系,提升图像特征提取和表达能力,优化网络整体性能;最后,融合优化后的特征编码和动态路由网络,将全局特征描述符和特征向量相结合,保留特征间的差异性和关联性,计算图像特征的相似性用于闭环检测。实验结果表明,相比基于VGG、AlexNet、BoVW及GIST的视觉定位方法,所提方法的准确率分别提高了24.54%、23.06%,43.81%和42.69%,实现了复杂场景下移动机器人闭环检测,提高了定位和建图的准确性和鲁棒性。

全文