求解含参不等式恒成立问题中参数的取值范围,是高考中的常考题型。解决这类问题的基本方法有三种:分离参数、构造函数求参数取值范围;构造含参函数,通过讨论参数取值范围将问题转化为求函数最值问题;通过所构造函数在定义域端点处满足的条件,缩小参数的取值范围,求出使不等式恒成立的必要条件,再证明充分条件,得出参数的取值范围,即所谓的“端点效应”。本文重点探究第三种方法——“端点效应法”的有效性与局限性。