摘要

太阳能电池片在生产过程中,因工序或材料原因会导致其存在缺陷。基于光致发光成像原理,提出了一种基于背景评估的太阳能电池片图像增强方法,以及一种基于形态特征和HOG特征融合的缺陷识别方法。首先分析了电池片缺陷的形态和位置特点,提出了缺陷两步分割法,对分割的缺陷提取多方向HOG特征,采取拉普拉斯特征映射法对HOG特征进行降维;然后融合长宽比、圆形度等形态特征;最后针对支持向量机(support vector machines,SVM)中的核函数和惩罚因子,采用粒子群算法(particle swarm optimization,PSO)加以优化,改善了缺陷分类效果。应用所确立的算法对50幅图像进行检测,分类识别的准确率最高可达98.3%。将新算法与传统的SVM算法以及Le-Net网络等进行对比,可知新算法具有较高的识别准确率。

全文