摘要

针对特定脑电信号数据集的情绪分类问题,研究紧凑型的卷积神经网络EEGNet在不同脑电数据集上的能力与效果,并通过在不同的脑电数据集上对EEGNet进行训练与调试,实现单模态脑电数据集的情绪分类。首先,介绍紧凑轻量型卷积神经网络EEGNet结构在时空数据集上的强大处理能力,提出在对EEG信号特征进行编码时的有效性假设。其次,介绍两种经典的脑电公开数据集SEED和SEED-IV,设计针对性的预处理方法、基于EEGNet的情绪分类实验并与其他经典分类方法进行了比较分析。最终,经过在SEED和SEED-IV数据集上的多轮测试,分别得到了85.3%和73.3%的分类准确率,验证了EEGNet在基于脑电信号的情绪分类任务中具有较好的健壮性与准确率。