摘要

实体关系抽取是信息抽取的关键任务之一,是一种包含实体抽取和关系抽取的级联任务.传统的实体关系抽取方式是将实体与关系抽取任务分离的Pipeline方式,忽略了两个任务的内在联系,导致关系抽取的效果严重依赖实体抽取,容易引起误差的累积.为了规避这种问题,我们提出一种端到端的实体关系联合抽取模型,通过自注意力机制学习单词特征,基于句法依存图蕴含的依赖信息构建依存约束,然后将约束信息融入图注意力网络来实现实体与关系的抽取.通过在公共数据集NYT上进行实验证明了我们工作的先进性和显著性,我们的模型在保持高精度的情况下,召回率有了显著的提升,比以往工作中的方法具有更好的抽取性能.