摘要
原核生物操纵子结构的准确注释对基因功能和基因调控网络的研究具有重要意义,通过生物信息学方法计算预测是当前基因组操纵子结构注释的最主要来源.当前的预测算法大都需要实验确认的操纵子作为训练集,但实验确认的操纵子数据的缺乏一直成为发展算法的瓶颈.基于对操纵子结构的认识,从基因间距离、转录翻译相关的调控信号以及COG功能注释等特征出发,建立了描述操纵子复杂结构的概率模型,并提出了不依赖于特定物种操纵子数据作为训练集的迭代自学习算法.通过对实验验证的操纵子数据集的测试比较,结果表明算法对于预测操纵子结构非常有效.在不依赖于任何已知操纵子信息的情况下,算法在总体预测水平上超过了目前最好的操纵子预测方法,而...
-
单位北京大学; 湍流与复杂系统国家重点实验室