摘要
为了解决航班风险评估精度不足的问题,对某航空公司225个航班运行数据进行统计和分析,运用Lasso和随机森林算法、粗糙集分析和支持向量机、主成分分析与RBF神经网络结合3类算法,使用相同训练集和测试集构建风险评价模型。结果表明:随机森林算法分类精度为88%;主成分分析与支持向量机算法合用分类精度由64%提升至86%;非线性主成分分析与RBF神经网络算法合用精度由52%提升至80%。综合3类算法的精度适用范围,构建混合模型,其最终分类结果精度可高达94%;并且,经过K折稳定性检验验证了方案的可用性和可靠性。
- 单位