摘要
深度学习是目前图像分类的主流方法之一,其重视感受野内的局部信息,却忽略了类别的先验拓扑结构信息。本文提出了一种新的图像分类方法,即Key-D-Graph,这是基于关键点的图对比网络方法,在识别图像类别时可以显式地考虑拓扑先验结构。具体地,图像分类需要2个步骤,第一步是基于关键点构建图像的图表达,即采用深度学习方法识别图像中目标类别的可能关键点,并采用关键点坐标生成图像的拓扑图表达;第二步基于关键点的图像图表达建立图对比网络,以估计待识别图与目标类别之间的结构差异,实现类别判断,该步骤利用了物体的拓扑先验结构信息,实现了基于图像全局结构信息的物体识别。特别的,Key-D-Graph的中间输出结果为类别关键点,具有语义可解释性,便于在实际应用中对算法逐步分析调试。实验结果表明,提出的方法可在效率和精度上超过主流方法,且通过消融实验分析验证了拓扑结构在分类中的作用机制和有效性。
-
单位复杂系统管理与控制国家重点实验室; 中国科学院自动化研究所; 中国医学科学院北京协和医学院; 北京协和医院; 山东师范大学