摘要
通过数据分析进行异常检测,有助于准确识别异常行为,从而提高服务质量和决策能力。然而,由于多维时序数据的时空依赖性以及异常事件发生的随机性,现有方法仍然存在一定的局限性。针对上述问题,提出一种融合新型统计方法和双向卷积LSTM的多维时序数据异常检测方法MBCLE。该方法引入堆叠的中值滤波处理输入数据中的点异常并平滑数据波动;设计双向卷积长短期记忆网络(Bi-ConvLSTM)和双向长短期记忆网络(Bi-LSTM)相结合的预测器进行数据建模和预测;通过双向循环指数加权移动平均(BrEWMA)平滑预测误差;使用动态阈值方法计算阈值以检测上下文异常。实验结果表明,MBCLE具有良好的检测性能,各步骤均对性能提升有所贡献。
- 单位