摘要

目的针对目前弱可见光与红外图像融合后的图像仍存在细节大量丢失、目标模糊不清的问题,提出一种基于Retinex对弱可见光图像进行增强预处理后,再基于NSST和SWT变换进行图像融合的算法。方法首先用SSR对弱可见光图像进行增强处理,增强后的可见光和红外图像进行NSST分解得到第1次的高低频系数,高频系数采用基于局部能量特征的方法进行融合;低频系数经过SWT分解得到第2次高低频系数,第2次的高频系数采用同样的方法融合,低频系数采用线性加权方法融合,然后将第2次高低频的融合结果经过SWT逆变换得到新的低频系数。最后把第1次高频系数融合结果和新的低频系数进行NSST逆变换得到融合图像。结果通过仿真实验,将文中算法与NSST,NSCT以及文献[5]算法进行对比,结果表明主观视觉上融合图像细节更加清晰,客观评价上,平均梯度、空间频率(SF)、标准差、信息熵、边缘信息保留量等指标分别提高了35.63%,26.73%,16.89%,7.2%,4.6%。结论文中算法对图像融合有较好的改善作用,融合图像的可视性和图像质量都得到显著提高。