摘要

基于重庆市境内长江航道雷达站拍摄的雾天气过程影像资料,利用K最近邻、支持向量机、BP神经网络、随机森林等机器学习算法,对无雾和5类有雾天气个例进行图像识别训练,构建雾图像识别模型,并检验了识别准确率。结果表明:机器学习能够有效识别雾图像,随机森林算法的识别效果优于其余3种算法。对于能见度超过1500 m的无雾天气,模型的识别准确率为100%,对于能见度在1000—1500 m范围内的轻雾、能见度低于50 m的强浓雾,模型的识别准确率在90%以上,对于能见度在50—1000 m范围内的雾、大雾和浓雾,识别准确率超过70%。