基于YOLOX-S的车窗状态识别算法

作者:黄键; 徐伟峰*; 苏攀; 王洪涛; 李真真
来源:吉林大学学报(理学版), 2023, 61(04): 875-882.
DOI:10.13413/j.cnki.jdxblxb.2022275

摘要

通过对YOLOX-S模型引入可变形卷积神经网络和焦点损失函数(Focal loss),解决原YOLOX-S模型车窗识别准确率较低的问题.首先,通过在YOLOX-S模型的主干特征提取网络中引入可变形卷积神经网络,对卷积核中的各采样点引入偏移量,以便在原始图像中提取到更具有表征的信息,从而提高车窗识别的精准度;其次,使用Focal loss替代原模型中的二元交叉熵损失函数,Focal loss能缓解正负样本不平衡对训练的影响,其在训练过程中更关注难样本,从而提高了模型对车窗目标的识别性能;最后,为验证改进算法的性能,实验收集并标注15 627张图片进行训练和验证.实验结果表明,改进后的车窗识别算法的平均目标精度提高了3.88%.

全文