摘要
轴承通常工作于复杂噪声环境下,使得时域振动信号容易受到各种噪声的污染,从而误导诊断结果。针对以上问题,提出基于一维卷积自编码(1D-DCAE)和一维卷积神经网络(1D-CNN)的联合抗噪故障诊断算法。为了模拟真实噪声环境,在原始振动信号中添加不同信噪比的高斯噪声,用1D-DCAE对原始信号降噪,再将降噪信号用于1D-CNN进行故障诊断。基于全卷积神经网络搭建1D-DCAE模型,并舍弃池化层以降低信息丢失,以提高联合诊断模型的抗噪能力。结果表明:采用基于全卷积网络搭建的1D-DACE有更好的降噪效果,改进后的模型能自适应诊断各种噪声环境下的故障。
- 单位