摘要
用小波分解(WT)和最小二乘支持向量机(LS-SVM)相结合的方法,建立西太平洋副热带高压面积指数的预报模型。该方法首先将西太平洋副热带面积指数(SI)分解为相对简单的带通分量信号,利用LS-SVM建立各分量信号的独立预报模型,然后对预报结果进行集成。为了评估和比较该方法的预报效果和技术优势,最后比较了在同等条件下WT~LS-SVM模型和神经网络、线性回归模型的独立检验预报效果。试验结果表明,该方法具有泛化能力强、预报精度高、训练速度快、稳定性好、便于建模等优点,具有良好的应用前景。
-
单位中国人民解放军陆军工程大学; 中国气象局广州热带海洋气象研究所