摘要

水源微生物检测在水源生物安全监测等方面具有非常重要的意义,而传统的显微镜观测等方法存在效率低、需要专业人员操作等不足,为此提出了一种水源微生物自动识别方法。采集水样,并制作水源微生物图像集,编写全自动与半自动两种图像分割算法用于提取目标微生物区域,并提取6种图像特征。基于以上特征数据,研究水源微生物识别模型的优化问题:首先,优化部分特征参数;接着,融合所有特征,建立粒子群优化算法的支持向量机(support vector machine optimized by particle swarm optimization, PSO-SVM)微生物识别模型,并与其他识别算法进行比较。结果表明,相比于其他3种算法,PSO-SVM能更有效地识别各种微生物,其平均识别率达到97.08%。