语音内容分类主要用于对大批量信号进行自动处理,并基于用户的兴趣选择语音文件。据此提出了一种新的分类方法,在多示例学习框架下,使用无监督语音表示学习对大规模未标记数据进行预训练,得到用于提取语音深层表示的预训练模型,提取的语音表示作为下游分类器的输入。真实语音数据集上的实验结果表明,多示例学习在处理语音分类问题上具有优势,提出的方法能够提高分类的效果,在平均准确率指标上优于3种基线方法。