摘要
针对电力大数据背景下智能电力用户负荷模式提取的可靠性不高且传统单一聚类算法聚类结果不稳定的问题,提出一种基于主成分分析与聚类融合相结合的电力用户负荷模式提取方法。首先,对负荷数据进行预处理,通过主成分分析法减少特征间分类信息冗余实现高维特征的降维。然后,用四种聚类方法分别对降维后的数据集进行聚类分析,得到具有差异性的聚类成员。最后,利用共识矩阵对所得聚类成员进行聚类融合,得到优于单一聚类算法的最终聚类结果。通过电网实际用电数据验证了所提负荷模式提取方法能够提高聚类准确率并降低计算复杂性,并用有效性指标Silhouette对最终聚类结果进行评价。
-
单位华北电力大学; 电子工程学院