摘要
遥感影像变化检测是遥感领域的一个重要研究方向,在农业、灾害评估和城市建设等诸多方向发挥着重要作用。目前的变化检测任务大多使用深度学习方法完成,但现存的诸多深度学习网络存在影像特征提取能力不强、变化区域不能精细化区分等问题。提出了一种多通道、多尺度特征融合的深度U型网络——MCFFNet。将Unet扩展为三通道结构,并在下采样过程中获得相应尺度特征影像的预分类特征信息和融合特征。在上采样过程中将对应尺度的特征信息融合。通过卷积激活等操作将特征图映射为单次最优变化检测结果图。在遥感影像变化检测领域常用数据集CDD和WHU数据集上实验得到了较对照方法更高的变化检测精度。
- 单位