摘要
脑疲劳是由于持续进行脑力劳动导致的一种状态,脑电被认为是脑疲劳状态检测的最佳工具。如何选取合适的脑疲劳特征成为脑疲劳检测的关键问题,传统模式识别中手动提取特征会产生信息损失,针对脑电的时空特性,本文设计了具有时域卷积核、空间域卷积核的深层卷积神经网络和浅层卷积神经网络两种网络结构,将特征提取和状态分类合二为一,对正常态与疲劳态脑电数据进行分类,可视化了卷积神经网络的空间域卷积核。结果表明,浅层卷积神经网络平均分类正确率为98.868%,深层卷积神经网络平均分类正确率为98.217%,均高于传统分类方法,通过空间域卷积核的可视化,能够了解不同导联在网络中的参与程度,验证了该模型在脑疲劳检测任务中具有很高的有效性,同时为脑疲劳检测提供了新思路。
- 单位