摘要
合理有效的好友推荐算法对于社交网络的发展和扩张有重大的意义。然而随着社交网络的复杂化和异质化,传统推荐系统中协同过滤推荐方法不能满足需求。针对异质社交网络中存在着大量的内容相关信息这一特点,根据好友推荐的需求,提出了多通道特征融合的好友推荐模型。该模型对用户相关的多维特征进行挖掘与利用,包括显性特征(如用户profile,用户tag,社交关系等)和隐性特征(如用户重要度,挖掘用户标注发现其领域兴趣等),并进一步将这些内容相关的多特征融合到协同排序算法中进行学习训练。实验结果表明,随着多个内容特征的逐步融合,算法的MAP值稳步提高,最终相对未融合的协同排序方法提高了12%,并在一定程度上的解决了冷启动问题,提高了好友推荐的多样性。
-
单位包头轻工职业技术学院; 包头师范学院