摘要

针对空间监视环境中基于动力学模型的轨道状态预测方法精度不够,基于机器学习的误差补偿模型可靠性不足,以及SSA应用中对不确定性建模的需求,将轨道状态预测误差估计问题重新表述为概率预测问题,提出一种对物理模型的轨道状态预测误差进行建模的方法.该方法将轨道状态变量误差的概率分布参数作为梯度提升算法的学习目标,以量化轨道状态误差估计中的不确定性.由于参数所对应的概率分布函数位于黎曼空间,利用基于Fisher信息矩阵的自然梯度代替标准梯度,推导自然梯度的计算公式,并给出状态预测误差的条件概率分布.实验结果表明,与仅采用物理动力学方法的状态预测相比,采用所提出机器学习误差估计方法后,轨道状态各分量的均方根误差至少降低约60%.同时,与其他常用不确定性估计方法相比,所提出方法可以得到更好的负对数似然值,因此能够有效估计状态预测误差的不确定性,提高将机器学习方法用于空间态势感知任务时的可靠性.

全文