摘要

针对股票价格序列高度非正态、非线性、非平稳等复杂特征,文章以Elman神经网络为基础,引入集合经验模态分解(EEMD)与Adaboost算法,对中美股票的日收盘价进行预测。首先,利用EEMD算法将样本分解为多个本征模函数分量和1个残差分量。其次,用Adaboost算法优化Elman神经网络,对各个分量进行预测。最后,将各分量预测结果进行求和,作为最终预测结果。研究结果表明:EEMD-Elman-Adaboost模型对中美股票价格预测的均方根误差、平均相对误差、平均绝对误差均比现有的BP、Elman、EMD-Elman、EEMD-Elman模型小,新组合模型融合了EEMD、Elman神经网络、Adaboost算法的优点,具有更强的泛化能力和跟随能力。

全文