摘要

卷积混叠环境下的盲源分离(Blind source separation, BSS)是一个极具挑战性和实际意义的问题.本文在独立分量分析框架下,建立非负矩阵分解(Nonnegative matrix factorization, NMF)模型,设计新的优化目标函数,通过严格的数学理论推导,得到新的模型参数更新规则;并对解混叠矩阵进行标准化处理,避免幅度歧义性问题;在源信号的重构阶段,通过实时更新非负矩阵分解模型参数,避免源信号的排序歧义性问题.实验结果验证了所提算法在分离中英文语音混叠信号、音乐混叠信号时的有效性和优越性.

全文