摘要

高超声速滑翔目标(HGT)机动模式复杂多样、轨迹形态灵活多变,增加了跟踪模型建模的不确定性,导致目标跟踪的精度低。为了提高跟踪精度,提出了一种基于强跟踪滤波的高超声速滑翔目标跟踪方法。首先,在地基雷达坐标系下建立目标运动模型和量测模型,利用维纳随机过程来表征运动模型中未知项的变化特性。其次,采用强跟踪无迹卡尔曼滤波(UKF)算法对目标运动状态进行估计,提高模型不确定性存在时滤波器的状态跟踪能力。最后,利用目标常用的基于标准轨迹的制导方法生成了一条可行飞行轨迹。仿真结果表明,该方法的跟踪精度高,强跟踪滤波能够有效降低模型不确定性存在时的状态估计误差。

全文