摘要
提出了一种基于双向长短期记忆网络和标签嵌入的文本分类模型。首先利用BERT模型提取句子特征,然后通过BiLSTM和注意力机制得到融合重要上、下文信息的文本表示,最后将标签和词在联合空间学习,利用标签与词之间的兼容性得分对标签和句子表示加权,实现标签信息的双重嵌入,分类器根据给定标签信息对句子进行分类。在5个权威数据集上的实验表明,该方法能有效地提高文本分类性能,具有更好的实用性。
-
单位山东师范大学; 菏泽学院; 山东英才学院