摘要
针对行人检测中利用SSD算法不易训练、检测精度低等问题提出一种改进算法。以DenseNet作为SSD的基础网络,在其后添加四层卷积层构建新的网络;为充分利用不同深度卷积层的信息,取新建网络的后四层和DenseNet中最后两个DenseBlock来提取目标框。实验结果表明,与其它算法相比,该方法对于不同场景下行人目标检测具有更强的鲁棒性,对行人的检测率超过92%,相比改进前的算法提高10%以上。
-
单位新疆大学; 教育学院; 湖北文理学院