摘要

涡扇发动机的整个生命周期在恒定的退化模式中,对其进行健康管理和剩余使用寿命预测具有重要意义。在发动机设备发生退化恒定故障中,为保证长期有效可靠性维护需要,该文基于机器学习与深度学习对涡扇发动机进行寿命预测,采用梯度提升决策树与随机森林模型对涡扇发动机特征进行重要性排序并建立Stacking集成学习模型,同时采用双向长短时记忆网络(BiLSTM)模型进行涡扇发动机寿命预测。结果表明,使用特征重叠后的Stacking算法模型表现优异,均方根误差(RMSE)较低,拟合优度约0.96,在涡扇发动机寿命预测方面表现良好。

全文