摘要

无回答在大数据应用中频繁发生。通常,实际数据的无回答率较低,在这样的情况下,采用倾向得分模型对无回答单元与回答单元进行匹配,易导致倾向得分匹配插补法的插补效果显著下降。为此,将合成少数类过采样算法的思想融入到倾向得分匹配插补法中,提出基于少数类过采样的倾向得分匹配插补法。利用统计模拟与实证研究,在不同无回答率、插补重数和误差分布情形下,演示新插补法的统计性质和应用效果。统计模拟显示,新插补法具有明显高于倾向得分匹配插补法的精度,统计性质受无回答率、插补重数和误差分布的影响小。实证结果显示,新插补法在实际数据中具有较好的应用性。基于少数类过采样的倾向得分匹配插补法提供了处理无回答问题的新思路,并具有较好的扩展性。