摘要

目标检测一直都是计算机视觉领域最具挑战的问题之一,其广泛的应用于人脸识别、自动驾驶和交通检测等任务中。为更进一步提升当前主流目标检测算法的性能表现,提出了基于YOLOX的目标检测改进算法,并在标准的PASCAL VOC 07+12和RSOD数据集上进行实验验证。针对YOLOX目标检测算法主要通过数据增强、改进网络结构和损失函数三方面做出改进,同时提出基于梯度差的自适应学习率优化算法用于训练改进后的YOLOX算法,该优化算法同样适用于其他神经网络优化。在PASCAL VOC 07+12标准数据集上进行实验,与原YOLOX-S进行比较,改进后的YOLOX-S算法的AP由61.63%提升到66.35%,提升效果明显。同时在RSOD标准数据集上进行实验,并与其他主流的YOLO系列算法进行了比较,改进后的YOLOX-S算法在RSOD数据集的AP由69.4%提升到73.2%,提升效果显著。实验表明,针对YOLOX的目标检测做出改进是有效的。