摘要

为了快速追踪随环境变化的动态多目标优化问题的Pareto前沿,提出基于个体预测的动态多目标优化算法(IPS).利用参考点联系算法筛选出特殊点,该特殊点具有良好的收敛性和多样性,通过对特殊点集的预测快速响应环境变化.提出针对种群中心点预测的反馈校正机制,在预测非支配解集的过程中,对预测步长进行反馈校正,从而使预测更加准确;为了避免算法陷入局部最优,提出混合多样性维持机制,引入由拉丁超立方抽样和精度可控的突变策略分别产生的随机个体,以提高种群的多样性.将所提算法与其他4种动态多目标优化算法进行对比分析,实验结果表明,IPS能够平衡种群的多样性和收敛性,在FDA、DMOP、F5~F10系列问题上,实验结果优于其他4种算法.