摘要
茶叶是我国重要的经济作物,对茶叶病害的及早发现与诊断,有利于农业生产者及时采取有效的防护措施。为了实现对茶叶病害的准确判别,采用叶绿素荧光光谱对茶叶的光谱特性展开研究。实验采集了健康茶叶样本90片,藻斑病轻度病害叶片90片,藻斑病重度病害叶片90片,并根据Kennard-Stone算法将样本数按3∶1划分训练集和预测集样本数,其中校正集为200个、验证集为70个。采用叶绿素荧光光谱采集系统对茶叶藻斑病、正常叶片进行光谱采集,其中采集参数设置为:积分时间20 ms,激光功率40 mW。分别分析了患病叶片和正常叶片的光谱响应特性,总体上看,三种叶片光谱主要存在吸收强度差异,光谱走势基本一致。在685和740 nm附近存在叶绿素的荧光峰,其差异主要表现在正常叶片光谱较另外两种叶片光谱吸收强度较高,而重度病害强度最低。然后使用多项式平滑(Savitzky-Golay)对原始光谱进行平滑和降噪处理,建立了偏最小二乘判别模型(PLS-DA),在PLS-DA建模集模型中,误判样品数为3个,误判率为3%; PLS-DA预测集模型中,误判样品个数为5个,误判率为7.1%。然后建立4种不同核函数的支持向量机模型进行比较得到,由RBF作为核函数,经主成分分析法(PCA)降维后的变量建立的SVM模型误判率最低,准确率达到95.72%,最后采用PCA结合线性判别分析方法(LDA)建立的模型效果最好,准确率达到98.9%。其中最优主成分数的选取由留一验证法取得,选用前10个主成分进行建模时,交叉验证准确率最高,达98%。通过模型对比得到PLS-DA建模集和预测集精度都达到90%以上,以四种核函数建立的支持向量机模型中,径向基核函数模型效果较优,达到95.72%。经主成分分析后建立的LDA效果最好,识别率为98.9%。该研究采用叶绿素荧光光谱结合化学计量学对茶叶病害进行识别,为茶叶病害的快速、准确预测提供一种新方法。
-
单位华东交通大学机电与车辆工程学院