摘要
目的:选择相应的机器学习算法构建二型糖尿病肾病风险预测模型,为疾病的早期预防提供科学依据。方法:基于解放军总医院提供的糖尿病数据集,通过对缺失值、异常值等进行一系列预处理,得到894条二型糖尿病患者数据。利用单因素逻辑回归筛选出24个有效检查指标作为特征,并基于随机森林、BP神经网络、支持向量机分别构建二型糖尿病肾病风险预测模型,同时对其查准率、召回率进行对比,以验证其应用性能。结果:随机森林预测模型的总体性能最优,3种算法的训练效果均较好。结论:二型糖尿病肾病风险预测模型能为疾病早期预防控制提供参考依据。
-
单位北京协和医学院; 中国医学科学院; 清华大学; 北京中医药大学东直门医院