摘要

为改善现有无线局域网(wireless fidelity, WIFI)室内定位算法的精度与复杂度问题,提出了一种基于二维卷积神经网络(2D-convolutional neural network, 2D-CNN)的WIFI室内定位算法。该算法将在线阶段的复杂性转移到离线阶段,在线阶段中仅使用2D-CNN网络进行训练;在离线阶段中,采集定位区域各采集点可接收到的所有无线接入点(access point, AP)的接受信号强度(received signal strength indicator, RSSI)值,并根据其计算峰值,二者结合构成位置指纹图像。再使用滑动窗口进行数据集扩充,最后将其引入到2D-CNN网络模型中进行训练,建立定位模型并完成定位。实验结果表明,在当前室内环境中,该算法的平均定位精度达99.58%,证实了不同参数、优化算法及模型架构选择的正确性。