摘要

【目的】利用光谱技术对定量估测大田甜瓜冠层叶片叶绿素含量,为田间的水肥调控以及田间管理提供理论依据。【方法】采用一阶求导对400~1 100 nm的叶绿素可见近红外反射光谱数据进行预处理,对于冗余的光谱数据,先分别使用特征筛选中的竞争性自适应重加权采样法(CARS)、遗传算法(GA)、蒙特卡罗无信息变量消除法(MC-UVE),再分别与主成分分析(PCA)特征提取算法融合;分别建立极限学习机(ELM)、支持向量机(SVM)、最小二乘支持向量机(LS-SVM)对甜瓜叶片SPAD定量预测模型。【结果】单一的特征筛选下,最优预测模型为CARS+SVM,校正集相关系数为0.903 5,预测集相关系数为0.893 1;特征筛选和特征提取融合下,最优的预测模型为GA+PCA+LSSVM,校正集相关系数0.955 8,预测集相关系数为0.939 7。【结论】优化后的模型可用于定量分析的使用,精准测定甜瓜叶片叶绿素含量。